Προσωπικό Σχετικά με το LAP Νέα-Ανακοινώσεις Προτενόμενες διασυνδέσεις Επικοινωνήστε με το LAP Αρχική Σελίδα
education projects groups equipment services
Predicting peak photochemical pollutant concentrations with a combination of neural network models
Kioutsioukis I., D. Melas, I. Ziomas and A. Skouloudis
[abstract]

The paper describes an attempt for the 24-hours prediction of photochemical pollutant levels using neural network models. Two models are developed for this purpose that relate peak pollutant concentrations to meteorological and emission variables. The analysis is based on measurements of O3 and NO2 from the city of Athens. The selected input meteorological variables fulfil two criteria: (a) cover atmospheric processes that determine the dispersion and diffusion of the airborne pollutants and (b) are available from routine observations or forecasts. The comparison between model predictions and actual observations shows very good agreement.

[keywords]
Air pollution; Diffusion; Dispersions; Mathematical models; Meteorology, Photochemical pollutants, Multilayer neural networks
Neural Network World, 10 (6), pp. 909-916, 2000
 http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0034485274&partnerID=40
back to publications list
  SEARCH
 
News Projects Research
Environmental Predictions
  LAP Projects
PHAETHON
APICE
ΠΥΘΑΓΟΡΑΣ
GEMS project
UV NET
Ε.Δ.Η.Ε.
Hrakleitos
MACC project
ΠΡΟ.ΤΕ.ΠΕ.
EUMETSAT
PHOENICS
PASODOBLE
QASUME
REMEDIO
SCOUT-O3
OMI-VAL
  LAP Activities
BOUNDARY LAYER GROUP
ENVIRONMENTAL FORECASTING
OZONE MAPPING
UV INDEX
UV MONITORING NETWORK
  Hosted
BALKAN PHYSICAL UNION
POST GRADUATE STUDIES
ΜΑR. KANAG. INSTITUTE


Ελληνική έκδοση


Laboratory of Atmospheric Physics - Physics Department, A.U.Th. Greece.
Secretariat: tel. +30 2310 998156 fax. +30 2310 998090 e-mail: lap@physics.auth.gr