Further studies on possible volcanic signal to the ozone layer
Zerefos, C. S., K. Tourpali, and A. F. Bais
[περίληψη] This paper provides a new look at the spatial and temporal distribution of monthly mean residuals of the global ozone field following the two large volcanic eruptions of El Chichon and Pinatubo. The residuals have been calculated after careful removal of the components of known oscillations from the monthly mean total ozone records. The removal eliminated not only the well-established Quasi Biennial Oscillation but also the robust pattern of all El Nino/Southern Oscillation events active during the period of study. These residuals are composed by a "climatic noise" term plus a possible volcanic signal whose amplitude is in some agreement with model calculations particularly over low and middle latitudes following El Chichon over the southern hemisphere and this result can be explained by the prevailing winds in the lower stratosphere in the post-El Chichon period as described in the text. Quantitatively speaking, the magnitude of the observed ozone deficiency which can be attributed to the volcanic effect is smaller than reported earlier either from theory or observations, and ranges between 2 and 4% at the equatorial latitudes up to about 5% over the middle and high latitudes, including the noise term, and lasting for a period of months after the eruption. These deficiencies are also larger than anticipated error caused by the aerosol-contaminated radiances, as reported by other scientists. The present results, although not precluding a transient volcanic component following large volcanic eruptions in the ozone records, do shoe, however, that our understanding of the physical mechanisms involved is probably still incomplete.